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Abstract-A basic differential equation of the local balance of the energy flux in homogeneous simple 
fluids (in Nell’s sense) is redeveloped for spatially and materially steady, quasi-simple shearing motions 
along circular (or also parallel) streamlines. By use of some theorems known from nonlinear continuum 
theory, it is shown that the supposed motions-here briefly referred to as generalized Couette flows- 
are dynamically almost possible if they are restricted to very narrow gaps, and that the material response 
of only first degree in the kinematic tensors, as represented by the viscosity function, covers the phenomena 
of work flux exhaustively. 

The partial differential equation established in a general form is then reduced to an ordinary one by 
assuming boundary conditions which allow to neglect all derivatives of the temperature other than those 
with respect to the transverse direction (i.e. perpendicular to the walls of the narrow gap). In the 
longitudinal direction (i.e. along the streamlines), the temperature does not change owing to the rotational 
symmetry supposed. In the lateral direction, in which the gap width may slowly change, any edge effects 
are disregarded. As to the transverse direction, two cases are taken account of: (a) both walls of the gap 
are maintained at constant, possibly different temperatures; (b) one wall has a fixed temperature, but the 
other wall is insulated against heat conduction so that its temperature is contingent upon the heat 
production. Approximate formulas, based on these assumptions and a Taylor expansion in the transverse 
coordinate, are worked out for temperature fields in gaps of revolution of any cross-sectional shape. 

In assigning specific orthogonal coordinate systems fitting to various-namely, cylindric, parallel, conic, 
spheric, parabolic, hyperbolic, and elliptic-patterns of narrow gaps of revolution, the way is paved for 
giving definite and mathematically exact solutions. The shear-rate dependence of the viscosity is allowed 
for in a first approximation based on a power-series expansion in terms of the kinematic invariant. A 
collection of basic formulas for the diverse patterns of gaps is given mainly for reference purposes. At the 

close, some often used assemblies (parallel plates, plate and cone) are studied in detail. 

NOMENCLATURE 

A, tensor of second rank (dimensionally 
variable); 

c, focal distance [L]; 

CH> specific heat capacity [L’ t-‘T-l]; 
C, Ci, constant quantities (dimensionally variable); 

stretching tensor [t-l]; 
function defined by (40); 
function defined by (42); 
coordinate scale factor [dimensionally 
variable] ; 
area1 density of energy influx [M tm3]; 
coefficient defined by (54); 
coefficient defined by (55); 
parameter of frame-indifferent derivatives 
[dimensionless] ; 
hydrostatic pressure [ML-’ tt ‘1; 
revolution radius [L] ; 
transverse position variable, [dimensionally 
variable]; 
gap width [dimensionally variable]; 
time [t]; 
stress tensor [ML-’ tt2]; 
in ternal energy per unit mass [ L2 t - ‘1; 
fluid velocity [L t-l]; 
spin tensor [t-l]; 
position vector [L]; 
axial coordinate [L]. 

Greek symbols 

a, P, functions defined by (40); 

shear [dimensionless]; 
material coefficient [ML-’ tne2; n = 1,. . .]; 
material constant of third degree [ML-’ t]; 
shear viscosity constant FM L-’ t - ‘] ; 
elliptic coordinate, also polar distance 
[dimensionless]; 
temperature [T]; 
coefficient defined by (53); 
thermal conductivity [ML tm3 T-l]; 
parabolic coordinates [L”‘]; 
curvilinear orthogonal coordinate 
[dimensionally variable]; 
function defined by (79); 
radial coordinate [L]; 
voluminal density of mass [M Le3]; 
real variables [dimensionless]; 
temperature difference across the gap, 
divided by the gap width [dimensionally 
variable]; 
function defined by (78); 
hyperbolic coordinate [dimensionless]; 
angular velocity [t-r]; 
angular velocity difference across the gap 
[t-l]. 

1. INTRODUCTION 

WHEN viscous fluids undergo fast shearing, a drop of 
the apparent viscosity may emerge and entail the 
question of accounting for this effect either by the 
assumption of a non-Newtonian flow behavior or by the 
temperature dependence of the viscosity. By the way, 
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this question has a historical significance in that it was 

paralleled with the question of the legitimacy of 
rheology as a branch of science in its own right. By now 
it has been settled that non-Newtonian phenomena are 
indeed relevant in a variety of cases, and a scalar 
nonlinearity of the viscosity will here be taken into 
account in terms of a workable power-series approxi- 
mation. 

On the other hand, Blok [l], invoking a hypothesis 
ascribed to Bondi [2], pointed out that viscous heating 
may prevail at a shearing stress higher than about 
5 x 104N/mZ. This value can only be reached when 
either the rate of shear is extremely high (such as in 
high-speed lubrication) or the material has an enormous 
viscosity (such as in forming processes of chemical 
engineering). 

In the first of these cases the flow mostly occurs 
between solid walls which are very little apart but 
extend amply in the other dimensions. Such devices will 
here be briefly referred to as narrow gaps. Yet we come 
to demonstrate that viscous heating effects are not 
bound to narrow gaps only, the substantially respon- 
sible factors being velocity (not divided by the gap 
width) and viscosity. 

The present paper is primarily to meet the demand 
for a comprehensive presentation of the relationships 
governing the temperature distribution in gaps where 
simple shearing in a somewhat widened sense takes place. 
Our interest is focused on circular motions of fluids 
between rotating solid walls. (The heating phenomena 
in rectilinear flows through narrow tubes and slits with 
stationary walls have been analyzed by several workers; 
e.g. [3] through [5].) A net effect of heat convection is 
thereby precluded. Hence the thermal process that 
matters is heat conduction across the gap only. The 
various patterns of gaps of revolution considered in a 
previous paper [6] are here studied again. Since we 
assume the fluids to be guided by boundary walls 
moving against each other at a fixed mutual distance, 
we suggest for the motions under study the generic term 
of generalized Couerte Jlows. Furthermore, the assump- 
tion of a steady state-both in spatial and material 
descriptions-will rule out complications associated 
with transient phenomena. 

The kinematical assumptions-which were already 
made in the former paper [6]-have, of course, to be 
checked for being also dynamically possible. This task 
-though eased by achievements of the previous 
research of many workers-largely occupies Section 2, 
while the calculation ofdefinite temperature fields is left 

to subsequent sections. 
Although Section 2 can be read as a self-contained 

survey of common interest, one of its main purposes 
shall be to warn the reader against inconsiderately 
employing the formulas given in Section 5 for gaps 
whose dimensional proportions are too much in favor 
of their width. Caution is required mainly because of the 
tendency to flow instability. The interdependence be- 
tween flow instability and temperature distribution, 
however, must stay outside the scope of this paper. 

In general, the temperature distribution associated 

with the supposed flow retroacts upon the velocity 
distribution, and vice versa. This is due mainly to the 
temperature dependence of the viscosity and, to a less 
extent, also to thermal conductivity. If there is a pro- 
nounced nonlinear flow behavior, the properties of heat 
transport may undergo a change caused by the flow and 
thus modify the temperature field, again with the effect 
of possible retroactions. Such phenomena as well as 
boundary effects (slip at the gap walls, disturbances at 
the open edge, and all that) are disregarded here. What 
comes to be considered represents much as the initial 
stage of approximation for more sweeping analyses 
(cf. [7] through [lo] for particular cases). 

The present investigations may be of particular con- 
cern for small gaps, in which accurate temperature 
measurements are hardly practicable. Instead, calcu- 
lations can be performed, in some analogy to the shell 
theory of structural mechanics. It is true, the calcu- 
lational results can be applied also to large (albeit 
narrow) gaps, which are amenable to measurements of 
the temperature distri bution, and may stimulate design- 
ing what can be called thermoviscometers. Such instru- 
ments must be sizable so as to accommodate several 
thermocouples for measuring the temperature distri- 
bution across the gap without sensibly disturbing the 
flow. However, the experimental aspects of thermo- 
rheology are not touched upon in this paper. (Regarding 
the so-called slip problem associated with inhomo- 
geneous flows in wide gaps cf., e.g. [ll].) 

2. PREREQUISITES 

2.1. Thermodynamical fundamentals 
The principles of the conservation of energy, mass, 

momentum and angular momentum lead-for a 
material continuum in which there is no energy ab 
sorption by irradiation or from internal energy sources 
of any kind-to a differential equation of the local 
balance of energy frux (or power), which we put in the 
somewhat uncommon but compact form 

div(j,+j,) = pnrli (1) 

with the denotations j, and j, for the vectors of the 
influx densities of work and heat, pnr for the mass 
density, and u for the internal (nonkinetic) energyt per 
unit mass. The dot put on top indicates the material 
derivative with respect to the time; for instance, 

li = (&#t)+kTgradu. (2) 

(*denotes the velocity vector. The transposition symbol 
T, intermediate between two vectors, indicates the 
scalar product of these vectors.) 

Assuming spatially steady processes, thereby ex- 
cluding explicit time dependence, means that the partial 

t Note that in (1) kinetic energy does not enter at all 
because its time derivative is cancelled out by part of the 
mechanical working in virtue of the dynamic balance, 
Cauchy’s first law of motion (cf., e.g. [12], esp. pp. 115-117). 
Clearly, in contrast to the balance of energy jux according 
to (I), the balance of energy does contain the kinetic energy 
in general. Hence the reader should understand why we desist 
from the widespread, but improper, usage of designating an 
equation like (1) as an energy balance. 
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derivatives with respect to the time, a/at, disappear. 
Moreover, the material continuum is supposed to be a 
homogeneous body in regard of its thermomechanical 
properties. The internal energy of the body may be 
stored only as heat. Then we can put u proportional to 
temperature 8, with a proportionality factor C being 
spatially constant. Hence we get from (2) 

ti = CkT grad 0. (3) 

The assumption of a steady state also implies that the 
flows be isothermal with respect to the time. Further- 
more, all the heat generated in the gap is conducted 
away through one or either wall of the gap.7 The 
temperature gradient along the streamlines (in the 
direction of %) is, therefore, zero. In other words, the 
lines of the temperature gradient and the streamlines 
are mutually orthogonal, viz. 

tT grad 0 = 0. 

Hence we get from (3) 

(4) 

ti = 0. (5) 

This amounts to observing no heat convection. 
Now we have to specify the 1.h.s. of equation (1). In 

mechanically nonpolar materials, in which jw is due only 
to the working of the symmetric stress tensor T, acting 
upon the velocity gradient tensor grad& we may write 

j, = -grad(TgradS) 

and hence 

div jw = - trTD 

with the stretching tensor D defined by 

D = *[grad % + (gradp)T]. 

(6) 

(7) 

(8) 

In materials in which jH is due only to heat con- 
duction, Fourier’s law 

j, = -lgradQ (9) 

holds approximately at small gradients of temperature. 
In thermally isotropic materials the tensor of thermal 
conductivity, 1, degenerates to a scalar I.$ Under the 

t This condition seems to be fairly satisfied in the meas- 
uring gaps of thermostated rotatory viscometers or in the 
lubricating gaps of cooled slide bearings, but is not so well 
fulfilled between walls made of glass, whose thermal con- 
ductivity is about two decimals smaller than that of metals. 
According to [13] and [14], capillary flows may rather be 
adiabatic; yet cf. [S]. 

$It should not be withheld that there may be an ap 
preciable anisotropy of thermal properties induced by flow 
orientation. However, experiments on greases, communi- 
cated in [15], have shown that the decrease (9 per cent on 
the average, after rectifying a misprint) of the thermal 
conductivity in the directions normal to the streamlines- 
that is, also in the direction which matters in the problem 
under study-falls behind the increase (23 per cent on the 
average) in the longitudinal direction. With 1, denoting the 
latter, )LI denoting the former and I denoting the thermal 
conductivity in the isotropic state of rest, those findings obey 
the theoretical relation 

(1Pl) + (2/A,) = 3/h. 
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assumption of material homogeneity already agreed 
upon, I is spatially constant. Consequently, 

div jH = -1divgrad8. (10) 

Later on, I is supposed to be also independent of the 
temperature. 

With (5), (7) and (9) we arrive at the differential 
equation 

1 div grad 0 = - trTD (11) 

(Poisson’s equation), which serves to determine a 
temperature field 0(x). 

2.2. Kinematical conditions 
In conformity with paper [a], we consider what will 

be defined here as quasi-simple shearing motions, whose 
streamlines form coaxial circles. (The latter speci- 
fication is not to preclude rectilinear motions, for the 
radii of the circles may tend to infinity. But the stream- 
lines must be parallel in this limiting case.) Further as 
in paper [6], we describe these motions by means of 
orthogonal curvilinear coordinate systems with lateral 
coordinates t” (normal to the surfaces of shear), trans- 
verse coordinates {’ (coinciding with the gradient lines 
of the shearing motion) and longitudinal coordinates 
C’ (coinciding with the streamlines). The velocity field 
jr(x) is accordingly given by the so-called physical 
components 

i(n) = 0, i(t) = 0, i(l) = ro (12) 

with the radial distance r of the circular path from the 
axis of rotation and with angular velocity w (which is 
independent of l’). The only nonzero component of 
grad ir, which is called the rate of shear and designated 
by ?;, completely characterizes the simple shearing. We 
have 

1(1, t) = 1’ = rawfh,ag’ (13) 

since all affinity coefficients of the covariant derivative 
in orthogonal coordinate systems vanish. (h, denote 
the scale factors of orthogonal curvilinear coordinates 

t;“.) 
In general, the material derivative A of any tensor A 

with respect to the time is defined by 

A = (aA/&)+(grad A)t (14) 

in spatial description. The first term on the r.h.s. of this 
equation vanishes because of the spatial steadiness 
already stipulated. For A we now substitute grad ir. This 
tensor has only zero components except for the (lt)- 
component given by (13). The spatial gradient com- 
ponent of this tensor along the streamlines-that is, its 
covariant derivative with respect to et-vanishes be- 
cause of the rotational symmetry implying 

ajag1 = 0. 

Furthermore, it turns out that all 
coefficients in orthogonal coordinate 
The result is 

(15) 
of the affinity 

systems vanish. 

(grad grad ir)f = 0. (16) 
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Hence the material time derivative of grad i vanishes. 
From (8) we thus obtain 

b = 0, \ir=o (17) 

for the stretching tensor D and the conjugate anti- 
symmetric tensor, the so-called spin tensor, W. The 
motions characterized by (17) are termed materially 
steady because they exhibit time independence in 
material description. 

(Motions which exhibit time independence in spatial 
description are customarily designated by the sole word 
“steady”. The motions investigated in the present paper 
are both spatially and materially steady. Note that both 
these properties coincide if and only if the velocity 
gradient component along the streamlines equals zero 
in spatial description.) 

From Euler’s criterion for circulation-preserving 
motions 

(grad ji)T = grad i (18) 

follows, in particular, the equivalent criterion w = 0 if 
the tensor of the velocity gradient is nilpotent, viz. 

(gradk)2 = 0. (19) 

Hence we can replace grad% in [18] by the material 
time derivative of grad k.t The motions under study do 
satisfy these conditions; that is to say, they are 
circulation-preserving. After a theorem enunciated by 
Coleman and Truesdell [17], such motions are dynami- 
callypossibfein all homogeneous incompressible simple 
materials (in Noll’s sense) if and only if these motions 
are also homogeneous, viz. in particular, if 

grad grad f = 0. (20) 

(Note that the homogeneity of motion as required by the 
above equation is by no means tantamount to the 
material homogeneity stipulated in Section 2.1.) 

The simplest imaginable, kinematically admissible 
motions of the type described by (12) and (13) are 
apparently featured by 

aolap = const, (21) 

while (20) comprises that the rate of shear is constant. 
These demands can be made approximately consistent 
only if the factor r/h* in (13) undergoes but very small 
variations over the width of the gap filled with the 
flowing medium. This condition says that but very 
narrow gaps can be admitted. 

The requirement of narrowness has also a plausible 
motivation. In principle, every inhomogeneity occur- 
ring in a flow is liable to originate some instability. 
Clearly, the instability will develop less, the narrower 
the gap is. However, the gap must not become so 
narrow that the wall boundaries begin to exert an 
adverse influence of another kind. 

Under condition (21) the supposed motions appear as 
homogeneous only relative to a definite coordinate 

t Cf. [16]; but supplement there, on p. 288, an inadvertent 
omission, namely the statement that the nilpotency of the 
velocity gradient tensor, as expressed by (19), is a necessary 
condition for the equivalence of the criterion ti = 0. 

system; they are, so to speak, but “locally” homo- 
geneous. Accordingly, we are dealing here with an 
infinitesimal enlargement of the group of simple 
shearing motions, as defined in [ 161, beyond the group 
of homogeneous motions. It is this conceptual ex- 
tension which we want to express by the epithet “qunsi- 
simple”. 

2.3. Rheological fundamentals 
The definition of D given in (8) yields for odd- 

numbered exponents (n, = 1,3, etc.) 

0 0 0 
. no 

W no I = (-) Y 0 0 1 
2 

(22) 
0 1 0 

and for even-numbered exponents (n, = 2,4, etc.) 

. 
[ID ne Y I= (-) 

0 0 0 
ne 

2 
010. (23) 
0 0 1 

(These and the following matrices hold relative to 
orthonormal bases which correspond to the indices of 
the physical components in the sequence (n), (t), (l).) 

Beside the symmetric kinematic tensors given by (22) 
and (23), time derivatives of the form 

A=A+AW-WA+m(AD+DA) (24) 

(cf. [ 181) are needed for a frame-indifferent description 
(i.e. one which is invariant under rigid motions and time 
shifts). The factor m in (24) denotes an arbitrary scalar 
parameter, whose value may be dictated by expediency. 
The arbitrariness exists because m multiplies symmetric 
tensor binomials composed of frame-indifferent tensors 
only, so that the essential character of the kinematical 
description is not encroached upon. The choice m = 0 
leads to the corotational (Jaumann’s) time derivative. 

For the motions specified in Section 2.2 we obtain, by 
inserting (22) and (23) into (24). 

[l3]=; i mo+l i (25) 

0 0 m-l 

as kinematic tensors of second degree, 

@j]=f : 0 0 m*-1 0 

0 m*-1 0 
and 

0 

[lbD+Dd] =f 0 

0 0 

0 m 
0 m 0 

as kinematic tensors of third degree, 

(26) 

(27) 

0 0 

m3+m2-m-l 0 3 (28) 
0 0 m3-m*-m+l 

[lliD+Db;] = f 0” 

0 0 

m*-I 0 , (29) 
0 0 mz-1 
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and 

[fj’] = f 
0 0 0 

0 (m+1)2 0 (30) 
0 0 (m--l)* 

[DD” +D”D] = ; “0 

0 0 

m+l 0 (31) 
0 0 m-l 

as kinematic tensors of fourth degree. The choice m = 1 
or - 1 makes the time derivatives of higher than first 
order, viz. 6, ii’ etc., vanish. 

We can do without writing down higher-order de- 
rivatives of D from a reason which can be understood 
on a general deliberation (cf., e.g. [19], esp. pp. 65-73). 
The motions under study belong to the class of motions 
with constant stretch history. After No11 and Wang, the 
response functional of simple materials subjected to 
such motions in the three-dimensional space is uniquely 
equivalent to a function of the first three Rivlin- 
Ericksen tensors A,, A2 and A,. These tensors are 
defined by Ai = 2D, AZ = 26, A3 = 2fi etc. with 
m = 1. For a special class of steady shearing motions, 
part of which form the motions specified in Section 2.2, 
it follows that the kinematic tensors of first and second 
degrees are quite sufficient. 

It is worth mentioning that one can choose, for the 
minimal representation discussed just now, likewise a 
set of kinematic tensors with m = - 1 instead of + 1. 
This seems obvious since both the cases rest upon 
conoectiue (Oldroyd’s) time derivatives, whose two 
forms are merely mathematically distinguishable in that 
the covariant tensor differentiation corresponds to 
m = 1 whereas the contravariant one corresponds to 
m= -1. 

On the basis of Wang’s corollary, we may thus 
represent the material response under the specified 
motions by a function of D and D with m = 1 or - 1. 
Moreover, supposing material isotropy, we invoke a 
famous theorem of Rivlin and Ericksen, according to 
which a function whose arguments and values are three- 
dimensional symmetric tensors can be represented by a 
tensor polynomial of the second degree in the argument 
tensors. In the case at hand we obtain for the stress T 
of an incompressible simple fluid under a pressure P 

T = -pl+~“‘D+~““D*+r’*‘~). (32) 

The three material coefficients I0 constitute scalar- 
valued functions of the simultaneous invariants of the 
kinematic tensors. 

From (32), with the aid of (22) (23) and (27), it follows 
that 

trTD = l?trD* (33) 

with 

trD* = 9’/2. (34) 

It is seen that (33) incorporates no material functions of 
higher than the first degree. Relying on the generality 
of the constitutive presuppositions, we may word this 
result like this : In steady quasi-simple shearing JIows- 
which are, by definition, also isochoric, but must be 

more than locally homogeneous-the dioergence of the 
work j&u density is, on the part of the material response, 
completely determined by the-in general, nonlinear- 
oiscosity, but not by any kind of viscoelasticity 
whatever. 

Besides, the material functions prove to be functions 
of 1;* only. By a Taylor expansion about the rest state 
(y = 0), which is assumed to be nonsingular, we obtain 
from (33) in conjunction with (34) 

trTD = (r) + <~*)~* (35) 

in a first approximation. In case of pseudoplastic fluids, 
one has [ < 0. We are allowed to regard r) and l 
approximately as material constants, provided f* << l/q. 

3. DIFFERENTIAL EQUATION AND 
BOUNDARY CONDITIONS 

On the footing of Section 2 we now advance to work 
up the differential equation (1 l), assuming that the 
material constants do not depend upon the tempera- 
ture, so that this equation can be dealt with uncoupled 
from the purely mechanical field equations. By taking 
advantage of orthogonal curvilinear coordinates 5”’ 
with scale factors h, and curvature radii pw (as pre- 
viously explained in paper [6]) the components of the 
differential equation under study can be written out as 

+“‘ID = ‘, (36) 

The sums here have to be formed over all of the three 
dimensions of space. 

In terms of the special coordinate systems (already 
introduced in Section 2.2) with coordinates <“, <‘, l’, the 
following simplifications can be formulated: first, the 
rotational symmetry implies that the derivative a/at’ 
equals zero in keeping with (15); second, the approxi- 
mate relation 

ajag” = 0 (37) 

applies because the supposition of very narrow gaps 
admits of the assumption that the major values of the 
temperature gradient occur in the transverse direction. 
Upon inserting the relations (12) and (21) equation (36) 
takes on the simple form 

a[&&+k+i)&] +trTD = 0. (38) 

It is owing to assumption (37) that the partial 
differential equation (36) could be converted into the 
ordinary one (38). Furthermore, that assumption in- 
volves a physically significant boundary condition: any 
influence of the free edge of a gap on the heat transfer 
appears to be removed out to r” = co. But what may 
the lateral heat transfer at the gap edge actually be? 
Adopting a zero temperature gradient there-as often 
done for sheer convenience-would presumably be an 
undervaluation. Also dare we doubt whether it should 
be possible to realize any fixed temperature there at all. 
Obviously, the uncertainty of this boundary condition 
is most reasonably eluded by what we have settled on: 
the heat transfer near the edge does not appreciably 
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differ from that appearing in the fictitious case of a 
smooth and unbounded continuation of the gap, 
together with the medium filling the gap, beyond the 
real edge. Consequently, 110 in@ence of the edge is felt. 

From (35) and (13) we get 

with 
trTD = nh;‘f (39) 

f = (a+fih; 2r2)r2 (40) 
and the abbreviations 

a = (d~)(ae@5’)2, B = (i/~)(ae@~‘)4. (41) 

After the common parlance, f may be called the 
perturbation function. Since the above specification of 
this function is but one of many possible ones, we shall 
not make use of it before there is need of doing so (viz. 
from Section 4.2 onward). 

Symbolizing the derivative with respect to <’ by a 
prime and writing 

1 1 I%, 
g=h, ,+p, -h,t 6 > (42) 

we obtain from (38) the abbreviated form 

e”+ge’+f = 0. (43) 

This is a linear second-order differential equation, 
which will be ready to solve. 

The particular solutions looked for are subject to any 
set of two boundary conditions. With a view to circum- 
stances met in important engineering and measuring 
appliances, we stipulate-for those cases in which 
particular solutions will be given here expressly-that 
in any two surfaces 5’ = 5: and 5’ = lb+ S (usually 
those bounding the two gap walls separated by a 
distance S), for example, the temperature is constant, 

say 0(G) = 0, f3((& + S)) = rs. (44) 

Here setting the temperature equal to zero at one of the 
walls means no loss of generality since temperature is 
physically defmed only up to au arbitrary additive 
constant, An appointment corresponding to (44) will be 
referred to as the case of ambidirectional heat transfer. 
However, other appointments are legitimate too, and 
some may be even preferable in certain cases. 

We consider a second set of boundary conditions, 
according to which it suffice-in order to ensure the 
isothermal state supposed-to let but one of the gap 
walls have thermal contact with an infinite heat 
reservoir (as was assumed in the former case for both 
the walls), while the other wall be kept thermally 
insulated. Thus the boundary conditions may be exem- 
plified alternatively by 

06%) = 0, @@b + S)) = 0. (45) 

This case of unidirectional heat transfer is likely to fit, to 
some extent, the facts perhaps existing in bearings made 
of metal-and-nonmetal couples, or in similar devices. 
We may anticipate that the temperature elevation in the 
gap will be higher in this case than in the former. (Turian 
and Bird [8] found that in a rotatory viscometer, 
composed of a thermostated plate and a thermally 
insulated cone, the viscous heating effect was even 
slightly larger than predicted by their theory.) 

4. GENERAL SOLUTIONS 

4.1. Solving procedure by a Taylor series approach 
Mathematically exact solutions of the differential 

equation (43) cannot be given without specifying the 
functions f and g. But it will become manifest now that 
a physically meaningful approximation immediately 
bears out some general results without such specifi- 
cations, provided the gap width S remains infinitesimal 
in contrast to the lateral dimension of the gap and 
provided the quantity Y stays finite (the latter proviso 
being intelligible since exceedingly high temperature 
differences between the gap walls would suppress the 
observation of heat production effects). 

With the transverse positional variable 

s = 5’--&, (4) 

which remains confined to within the infinitesimal 
interval 

O<sdS, (47) 

we introduce a Taylor expansion of a suitable degree n 

0 = i Bs”S”/v!, (48) 
Y= 1 

assuming $ = 0 in accordance with the first of the 
boundary conditions (44) or (45) and denoting by et) 
the value of the vth derivative of 0 with respect to s 
at s = 0. 

(a) Case of an&directional heat transfer. On acwunt 
of the second of the boundary conditions (44), which 
prescribes 0 = YS at s = S, we have from (48) as a first 
equation for the determination of the constant co- 
efficients et) 

e* +& s + #ys = I-, (49) 

when expanding only up to the third degree in s 
(including S). The differential equation (43) merely 
serves to deliver the rest of the conditional equations 
for the coefficients I$“). Let fe, go denote the values of 
the functions f, g, and let fd, gb denote the values of 
the derivatives off, g with respect to s, taken at s = 0. 
Then we immediately obtain from (43) 

g0&+& = -fo (50) 

and further, by differentiating (43) and evaluating at 
s = 0, 

gb@e+g0&+Bb” = -fd. (51) 

Resolving the system of conditional equations (49) 
through (51), dropping all terms of degree higher than 3 
(while assigning to Y the degree 0, at the least) and 
substituting the expressions thus obtained for the 
coefficients f#,“J into (48) we arrive at the approximate 
solution 

8 = l-s+ 
[ 
GK+&(S+s) 

1 
(S-s)s (52) 

with the abbreviations 

and 

K = 1++grJs, (53) 

K = sO+goT (54) 

L = fo-fogo+@b-s% (55) 
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(This result can likewise be gained by the perhaps 
more habitual procedure of setting out with general 
Taylor expansions for f and g, as well as for 8, in the 
differential equation and making a successive com- 
parison of coefficients.) 

(b) Case of unidirectional heat transfer. In place of 
(49) we find on account of (45) 

eb + e; s +flXd’S = 0, (56) 

whereas (14) and (15) continue to hold. In analogy to 
case (a), the approximate solution comes out to be 

8 = fo(S-+@)s 

+:[f~(S’-:s*)+fog,(s*-Ss+~s*)]s. (57) 

4.2. Characteristics of the approximate temperature 
profiles 

(a) Case of ambidirectional heat transfer. The accu- 
racy of the approximate solutions worked out above is 
more restricted, the higher the order of the derivative of 
the quantity under investigation. This fact must be 
borne in mind when the characteristics of the tempera- 
ture profile across a gap come to be ascertained in terms 
of the derivatives, which read in the present case on the 
basis of the solution (52) 

8’= Y+;K(S-2s)+&S*-3s’) (58) 

and 
@‘= -icK-Ls. (59) 

Setting 0’ = 0 and supposing L # 0, we find the 
solution of the third-degree approximation according to 
(58) to be 

KK lcK * s,gmax= --+ 
L [( > 

y +$+$s+:s' 1 
w 

(W 

for the location s = somax of a possible temperature 
maximum, which actually exists if the value sBmsx 
proves to lie inside the interval (47). (The proper sign 
of the square root in the above equation can be 
checked in a way exemplified in Section 6.2.) The 
particular case L = 0 yields the limiting value 

(61) 

Setting #’ = 0, we find for possibly existing points of 
inflection in the temperature profile 

Seine = -KK/L. (62) 

When only the second-degree approximation, viz. 

8= p+fK(S-s)]s, (63) 

is drawn upon, no points of inflection come to the fore. 
The location of a possibly existing temperature maxi- 
mum is then given by 

S B max = (S/2) + (T/Q, WI 

which differs from (61) merely in that the number 1 
occupies the place of K. At this approximation stage the 
maximum is easily calculated to be 

0 Illox = K(se ,px)2/2 (65) 

with semu substituted from (64). These simple formulas 
readily lend themselves to discovering some essential 
features, which will now be set forth. 

To begin with, we have to specify K according to (54). 
When Y tends to zero, the influence of the purely 
geometrical quantity go vanishes, so that f. alone 
retains importance. We will contemplate this case at 
first. 

Assuming l= 0 (thereby excluding nonlinear vis- 
cosity), we obtain from (40) in conjunction with (41) 

f = WWWX’)*. (66) 

Furthermore, let &/al’ be independent of 5’ (i.e. the 
velocity profile be linear), say, equal to n/S with Q 
denoting the difference of the angular velocities of both 
the gap walls. Consequently, 

f = WWW*. (67) 

If Y = 0, we get from (54) K = fo, and thus from (65) in 
conjunction with (64) and (67) 

&, = (~/8~)(r&)*. (68) 

This formula has to be looked upon as representative 
of an outcome emerging from the thermal balance 
between viscous heat production and conductive heat 
transfer. Above all, note that the gap width S does not 
figure in this formula any more. It is true that a large 
velocity change over a short distance (in other words, a 
high rate of shear) must occur so as to produce a high 
viscous heating. But the cooling in the heat-conducting 
medium, embedded by heat-absorbing walls, goes up 
equally when the gap width is diminished. As a result, 
the temperature rise fails to depend upon the gap width. 

To afford a numerical estimation, one must take into 
account that the viscosity constant q encompasses an 
incomparably wide range of values. The thermal con- 
ductivity R, on the contrary, ranges between 0.1 and 
0.2 W/mK for most of the liquids, except for water and 
alcohols, and decreases not more than about 10m3/K 
(whereas water exhibits an increase) with rising tem- 
perature.? For instance, the values q = 1 Ns/m* (= lop), 
1= 0.14 W/mK (as found for lubricating oils within a 
very wide range of viscosity values) and rQ = 1 m/s 
yield the result emax z 1 K. There may occur higher 
temperature elevations in more viscous materials or at 
higher velocity gradients. In gas-filled gaps, however, 
the much lower viscosity of the gases will commonly 
not admit of appreciable temperature elevations-in 
consideration of the facts that most gases, including air, 
have thermal conductivities of about a tenth, and that 
hydrogen has one of like order of magnitude, compared 

t All known theories of heat conduction intelligibly adopt 
proportionality of the thermal conductivity to the sound 
speed (as being identical to the speed of heat waves). More 
over, after a theory which was published by Bridgman as 
early as in 1923, but seems still approved despite its naive 
foundation, the thermal conductivity varies inversely as the 
square of the mean distance between the centers of adjacent 
molecules. The above-mentioned relations can be roughly 
deduced from this theory (cf., e.g. [20], esp. pp. 77-83). In 
contrast, we are unaware of any similar theory concerning 
viscosity. 
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to the value given above. (A well-known exception, 
which results from the huge velocities involved, is 
encountered at the re-entry of astronautical objects 
falling into the atmosphere of the earth.) 

and 

0” = -fo-f&s-f~g&s-s) 

it follows that 

SLJ Znax - -S 

and, in the third-degree approximation, 

It is instructive to contrast the effects of heat con- 
duction and convection with each other. The conduo 
tive heat flux is defined by (9). The convective heat flux 
density equals ~~c,t&u, with mass density pN, 
specific heat cII, absolute temperature &bs and con- 
vective velocity a. Both the heat fluxes become equal to 
each other in magnitude if 1 t: 1 takes on the critical value for another temperature maximum and 

S% max = 
2f,+(hgo+fdP 

fog0 -fd 
(74) 

ac!crrl = (@PM CR @abn) /grad 6 / . 16% 

Let v be a transverse perturbation component of the 
circular motion of the fluid. For a rough estimation we 
suppose that a constant temperature gradient exists in 
the gap between a wall and the locus of the temperature 
maximum. Assuming Babs = 300K and a tem~rature 
rise of 1 K at a distance of IO-‘m, we obtain for a fluid 
(e.g. a lubricating oil) with II = 0.14 W/mK, pw = 
920kg/m3 and cH = 1700 Ws/kgK the result vc,it = 
3 x 10-4m/s. This value looks small as compared to a 
lon~tud~al velocity difference which lies in the order 
of magnitude of 1 m/s (cf. the preceding numerical 
example). When the gap width increases, rcrit decreases 
inversely proportional to it. Hence we conclude that 
even a slight deviation from the un$orm motion due to 
some flow instability is able to upset the temperature 
profile predicted by the theory, unless the gap is 
su~ciently narrow. 

for points of inflection, possibly appearing within the 
gap. The temperature maximum at the insulating wall 
exists under any circumstances and has the value given 

by 

t&l,,, = fSoS2 +B(fo90+2f6)S3. (76) 

Note that the leading term of this expression differs 
from formula (65) only by a constant factor. 

5. SPECIAL SOLUTIONS 

5.1. ~re~~rninar~es 

Having discussed some relevant phenomena on the 
basis of the simplest case, we are free to pass over to the 
case Y # 0. Clearly, setting up a temperature d$krence 
between the gap walls effectuates a displacement of the 
temperature maximum in a direction depending on the 
sign of the difference. At certain mounts of this 
difference the maximum disappears beyond one or the 
other of the walls, There are two critical values of r for 
these events: l” = To for sUmax = 0 and Y = Ys for 
semax = S. In the second-degree approximation we 
easily calculate from (64) in conjunction with (54) that 

The solutions presented in Section 4 are general in 
that they hold in any orthogonal coordinate system. 
This generality has to be paid for with a loss in accuracy. 
However, the underlying differential equation can be 
solved exactly in particular cases, and these solutions 
lend themselves to checking the accuracy attained by 
the approximate formulas of Section 4. 

In the sequel is given a compilation of examples, 
which fully correspond with the patterns considered in 
paper [6], where the reader can also look up illus- 
trations of the various patterns and basic relations of 
the calculus operating in the various orthogonal 
curvilinear coordinate systems. 

The selection of the examples was dictated by the 
intention to investigate devices of some practical im- 
portance, namely such as are applicable or factually 
applied in viscometry, lubrication, or chemical engin- 
eering. Patterns which seem difficult to materialize (e.g. 
toroidal gaps) are not taken into consideration. ?-o= -6, rs=2&$ (70) 

The criterion for the exclusion of a temperature maxi- 
mum in the gap may be summarized in terms of the 
inequality To -$ Y < Y,. A similar reasoning applies 
to the existence of possible points of inflection, whose 
location may be calculated with the aid of (62) at the 
stage of the third-degree approximation. 

(b) Case of unidirectional heat transfer. This case can 
be handled more briefly, for it is in close analogy to the 
former case, so that a repetition of the commentary may 
be largely dispensed with. Additionally, major simpli- 
fications ensue from the unidirectionaiity of the heat 
transfer. 

We have merely to state that from (57) and the 
derivatives 

(72) 

(73) 

Every example of the collection (Section 5.2) will 
contain, first, the expressions for the functions f and g 
as defined by (40) and (42), which are needed also for 
the approximate calculations according to Section 4 in 
definite instances. Next. the mathematically exact 
solutions of differential equation (43) will be quoted. 
For the sake of brevity we forbear displaying the 
respective solving methods (which may follow standard 
rules). From a similar reason, only the general integrals 
are given. Their integration constants, Ci and C,, 
contingent upon particular boundary conditions, are 
Ieft to be determined for any instance of interest. 

It will certainly not be gratuitous to emphasize that 
the mathematically exact solutions are liable to lose 
their physical significance when they come to be applied 
ontogaps of finite width. This statement is a substantial 

6’ = fo(s-s)+:~fdis2-.~Zf+.~gotS-~~2] (71) conclusion to be drawn from Section 2. 
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Unless nonlinear viscosity is excluded, one may be 
faced-in some instances-with the necessity of com- 
puting integrals which defy being expressed solely in 
terms of elementary functions. These are the natural 
dilogarithmf 

s 

In1 
dilnz = - ln(l-z).dlnz (77) 

-m 

and the integrals 

X(r; 0) = 
i 

arctan r z 

0 

arctan ;. d arctan z 

=- J 
artanhr 

artanh I_. d artanh 7, (78) 

qT;(r)’ p”‘; ; 0 artanh - . d arctan 7 

artanh c 

=- 

s 

arctan z. d artanh 7 (7% 
0 u 

(with 7 and adenoting any dimensionless real variables] 
If the integration ranges over but an infinitesimal 
interval from 7 = 7. to 7 = 7O + 67, the integrand can 
be expanded in a Taylor series in terms of powers of 67 

and then be integrated over 87. Expanding up to the 
second degree, we obtain the general approximation 
formula 

J NW + dd) cpb) h(7) X(Q) CO+&? = s cp(4iW dr = cp(7oMf7oF57 

10 

+; C~'~70~X'~70~+~~73~n~70~1~~7~2 + jj 
(80) 

x [so"~7o~~'~7o~~~rp'~7o~~"~7o~frp~7~~~"'~7o~l~~7~3~ 

which may help to avoid laborious evaluations of those 
transcendental integrakf 

5.2. Collection of mathematically exact formulas 
52.1. Cylindric gap. The walls are bounded by the 

curved surfaces of coaxial circular cylinders. The 
surfaces of shear form parallel planes. See Fig. 1. 

[f=r, ,,=z (81) 

j-The notation of this function is not uniform in the 
literature (cf. a recent monograph [21]). The function as 
defined by (77)-in agreement with Nielsen [22], among 
others-has been tabulated by several workers [23] through 
[ZS], but not beyond the domain -5 < z < 1. 

$This may be illustrated by way of an example. In so 
doing, we use the parabolic gap formula (120) subsequently 
listed in Subsection 5.2.5. One has to compute the difference 
of diln( - (1 -‘v’), as defined by (77), between the boundary 
points Y = v0 and the intermediate gap points v = vg fs for 
p = const, say, Jo =‘pO (which represents that surface of shear 
passing through both the plane z = 0 and the bounding 
surface v = vo), so that z0 = - 1. Equation (80), after being 
rearranged according to Homer’s scheme (destined to 
abridge the computational procedure). then reads 

diln[-(l+ty]-d&(--l) 

FIG. 1. Cylindric gap. 

h, = 1 

Pnr = a 

plr = r 

f = (a +/!?r*)rZ 

g= l/r 

ae Cl tl j? _ = ---r3 __r5 
ar r 4 6 

(82) 

(83) 

(84) 

(85) 

(86) 

0= Cz+CIlnr-ir4-$. WI 

5.2.2. Parallel gap. The walls are bounded by parallel 

planes. The surfaces of shear constitute coaxial circular 
cylinders. See Fig. 2. 

FIG. 2. Parallel gap. 

,‘=z, p-r 

h,= 1 

PIN = a 

Plf = a 

f = (d+fir*)r’ 

g=o 

g = C1 -(ar2+fir4)2 

0 = C, + C, z--&~-~ +/?r4)z2 

(89 

(90) 

(911 

(92) 

(93) 

(94) 

(95) 

(96) 

with 

&=- 2+_s_ _s_. 
( 1 vo vo 

Substituting, for instance, s = vO/10 and therefore 

6r = -0.21, 

we obtain 

diln( - 1.21) -diln( - 1) zz -0*1415124. 

This approximate value can be checked with the aid of 
Powell’s table [23], from which we take the values 
diln( - 1.21) = -OS9639673 (after a quadratic interpolation) 
and diln( - 1) = -0.8224670 (by direct reading), hence the 
sought difference -0.1415003. Thus we may expect the 
above approximation to be accurate up to the fourth decimal 
place. One of the merits of this approximative computation 
consists in sparing possible entanglements with small dif- 
ferences of large numbers. 
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5.2.3. Conic gap. The walls are bounded by the 5.2.5. Parabolic gap. Both the bounding surfaces of 
curved surfaces of convertical and coaxial circular the walls and the surfaces of shear constitute confocal 
cones. The surfaces of shear constitute concentric and coaxial circular paraboloids. See Fig. 5. 
spheres. See Fig. 3. 

: 

FIG. 3. Conic gap. 

C’ = 9, r” = p, I= psin9 (97) 

h, = P (98) 

Pnt’~ (99) 

Prt = Ptan3 (100) 

f = [iz f &sin S)‘](p sin 9)’ (101) 

g=cot$ (102) 

de 
as- - --$+p2 K 1 t+g (cosQ.sin9) 

-~(cos$)3sin9+ (F+B,B)cotG] (103) 

6= C,+C1artanhcos9-p* 

52.4. Spheric gap. The walls are bounded by surfaces 
of concentric spheres. The surfaces of shear constitute 

+ipEdiln(-pV2v2) (120) 

convertical and coaxial circular cones. See Fig. 4. 
5.2.6. Hyperbolic gap of the first kind. The walls are 

r’ bounded by surfaces of confocal circufar h~r~~oids 
of one sheet. The surfaces of shear constitute confocal 
oblate spheroids. See Fig. 6. 

FIG. 4. Spheric gap. 

r* = p, 4” = 9, P = psin9 005) 
h, = 1 (106) FIG. 6. Hyperbolic gap of the first kind. 

Pnc = P (107) 

P1t = P (108) r’ = 3, (” = $4, r = ccoshIj/.sin$ (121) 

f = ~5z+-~@sin9)z]@sin9)2 (109) h, = c[(sinh I&~ + (00s 9)2]1’2 (122) 

9 = 2/P (110) pnt = -c(sia 9. cos 9)-’ [(sinh I,@ -I-{cos~)~J~‘~ (123) 

$=$-~(sin89,‘p”-+(sir18)~p~ 
pft = c tan 9. [(sinh$)2 +(cos $)2]1/2 (124) 

(111) 

’ = 

(cash II/. sin LJ)~ 

@=,-CL” * 2. (sin 9)2p4 - & (sin 9)4p6. 
[a+B(sinhJI)“+(cos9)z 1 (c cash 1(1, sin 9)2 (125) 

D (112) 
.~ g-cot9 W9 

I Y 

FIG. 5. Parabolii: gap, 

F_’ = v, r” = Pu, r = pv (113) 

h, = (p2 + v~)I’~ (114) 

pnl = v- ‘j$ + Y2)312 (115) 

ptr = v($+ vy2 (116) 

(117) f = (a+Bg&v 
g = l/v (118) 

’ 8 -iIn(l +fi-*v2) (119) -2” v 
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ae Cl 
-_= -- 
a9 sin9 

+ c2 
t 
5 [a(cosh $)’ 

1 
I- ; [2:2afeosh $)2 - 2#I(cosh $Q4 - 3&osh $)“I 

x cots+ B 
m (cash $)*(sin 9)-l axtan ?$ 

t 127) 
13 = Cz + C1 artanh cos 9 

- c2 
1 
i [a(cosh $)2 -&cash II/)” J (cos S)’ 

- 5 [2a@osh @)’ - 2@(cosh $)” - 3&osh $)“I 

xinsinS B -w (cash $)%(eos 3; sinh $) (128) 

5.2.7. Hyperbolic gap of the second kind. The walls 
are bounded by surfaces of confocal and coaxial circular 
hyperboloids of two sheets. The surfaces of shear con- 
stitute confocal prolate spheroids. See Fig. 7. 

&-____ c!?+, b 
FIG. 7. Hyperbolic gap of the second kind. 

fy= 9, p= $, r = csinh$.sin9 (129) 

h, = cf(sinh I_&~ + (sin Qj2-J1f2 uw 

pnr = c(sin 9 I cm 9)- ‘[(sinh cc)’ + (sin 9)*j312 (131) 

Prt = c tan 9, [(sinh $)” + (sin Q)2]1’2 ~32) 

I 
(c siuh I@. sin 9)2 (133) 

g = cot9 (134) 
6% c, -= -- 
as sin 9 

a ( sinh $)’ -t- p(sinh $)‘I (cos 9. sin 9) 

+ [2a{sinh $)z + 2j?fsinh +)4 - 3jQinh IF/>“j 

x cot9+ ---& (sinh $)6fsin 9)- ’ artanh s 

0 = C2 + C1 artanh cm 9 (135) 

- cz 
I 
d [a(siuh #)2 f jQinh +)“I (cos 9)’ 

- $ [2a(sinh 1(1)’ -t 2/?(sinh JI)” - 3j3(sinh $)“I 

x Ink&I - ---& (sinh It)BX(cos 9; eosh $1 (136) 

5.2.8. Elliptic gap of the first kind. The walls are 
bounded by surfaces of cmfoeal oblate spheroids. The 
surfaces of shear constitute oonfocal circular hyper- 
boloids of one sheet. See Fig. 8. 

RG. 8. Elliptic gap of the first kind. 

y= $, 5” = 8, r = csin$.cosh$ 

h, = c[(eos @‘+(sinh $)“]“’ 

P., = c(sinh I,G. cash +)-‘[(cos 9)’ +(sinh S)‘]“‘” 

pIr = c coth $ , [(cos 9)2 -t (sinh $)2]1/2 

g= tanh$ 

(137) 

(138) 

0 39) 

(140) 

041) 

(142) 

- ~2 
i 

1 
5 [a(sin 9)2 + fl (sin Sr] (sinh 9. cash 9) 

+ i [%a(sin $?)2 -i-2j@n 9)” + 38(&n S)“] tanh $ 

+B toss (sin @*(cash $)-I arctan 
sinh I(/ 
~0~9 043) 

Q = C2 -I- Cl aretan sinh # 

- c2 
i 
i [m(sin 9)’ +&sin 9)4](sinh $)2 

+ t [2&u @2 + 26&n 9)4 +- 3#(sin 9)“] In eosh 9 

‘\ +~(sinS)*X(sinhi;MsS)j 

5.2.9. Elliptic gap of the second kind. The walls are 
bounded by surfaces of confocal prolate spheroids. The 
surfaces of shear eonstitute confocal and eoaxiaf 
circular h~r~loids of two she&s. See Fig. 9. 

FIG. 8. Elliptic gap of the seeand kind. 
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5’ = 1(1, 5” = 9, r = csina.sinh* 

h, = c[(sin 9)2+(sinh $)‘I”’ 

pnt = c(sinh II/. cash Il/)-‘[(sin 9)* +(sinh $)z]3i2 

plI = c tanh $. [(sin 9)2 + (sinh $)“]“” 

(145) 

(146) 

(147) 

(148) 

It seems also worth while pointing out the thermo- 
rheological import of the quantities a and fi. According 
to the definitions (41) we have 

P/U = ([/~)(r”W/?#. (153) 

By definition, p/a is negative in pseudoplastic fluids. 
Regarding devices in which the influence of /J in pro- 
portion to a becomes maximum (such as in the case of 
a symmetrical’conic pattern mentioned just before), one 
could think of enhancing the gradient &@<’ so much 
that the temperature-lowering effect associated with 
pseudoplasticity comes to outweigh the heating effect 
of first degree (due to linear viscosity alone), were it not 
inconsistent with all the experience hitherto gained. At 
too large rates of shear the ratio of [ to ‘1 remains no 
longer constant. 

(sin 9. sinh $)’ 

‘= [a+P(sin.9)2+(sinh$)2 1 (c sin 9. sinh 11/)* 

g = coth $ 
a0 Cl -= -___ 
a* sinh $ 

(149) 

(150) 

-c* f[a(sin9)2+B(sin9)4](coshIjl.sinh$) 
( 

-i [2a(sin 8)* + 2/?(sin $)4 + 3/?(sin 9)6] coth II, 

- & (sin 9)s(sinh $)-’ artanh z (151) 

0 = C2 + C1 artanh cash $ 

- c* 
1 
i [a(sin 9)2 +&sin 9)4](cosh $)’ 

- f [2a(sin 9)* + 2/?(sin 9)4 + 3/?(sin 9)6] In sinh $ 

- 5 (sin WX(cosh 1(1; cos 9) . (152) 

5.3. Miscellaneous comments 
As we learn from Section 4.2(a), the temperature 

maximum is not bound to lie exactly in the middle of 
the gap. Exceptions-among the selected examples- 
are seen from the foregoing section to be the parallel 
gap as well as those types of the conic gap and the 
hyperbolic gap of the second kind which exhibit 
symmetry with respect to the plane 9 = n/2 (i.e. z = 0), 
provided both walls are at a like temperature (i.e. 
r = 0). 

The coefficient function g, which is of a purely 
geometrical character, becomes identical to zero only 
in the case of the parallel gap and stays nearly zero in 
some limiting cases, namely-among the selected 
examples-in the cases of the conic gap and the 
hyperbolic gaps of either kind in the vicinity of the 
plane 9 = n/2, and in the case of the elliptic gap of the 
first kind in the vicinity of the plane J/ = 0 (i.e. always 
in the vicinity of the plane z = 0). Note also that g is, 
on principle, independent of the lateral coordinate 5”. 

The other coefficient function, f, is not only geo- 
metrically conditioned but also contingent upon 
mechanical entities, which are involved in the quantities 
a and 8. According to (40) a and /? are interrelated 
independently of the lateral position (that is to say, 
r/h, does not depend upon [“)-among the selected 
examples-in the cases of the cylindric and conic gaps 
only. In these cases the relation between a and p can be 
varied merely in terms of the cylinder radius r or the 
cone angle 9, respectively. The influence of p increases 
proportionally to r2 or (sin 9)*, respectively. As to the 
conic pattern, the maximum of this influence belongs 
to a gap which is symmetric with respect to the plane 
9 = 7~12, and in this case holds the relation r/h, = 1. 

In this context we should not omit remarking on the 
change of the shear rate along the lateral direction in a 
gap. (This change rests upon the derivative a$/@“. The 
formulas for the shear rates Ij of the various patterns 
can be looked up in paper [6].) The rate of shear does 
not vary in the conic and cylindric gaps, but increases 
with the radial distance in all of the other instances 
considered in Section 5.2-the sole exception being the 
hyperbolic gap of the first kind, which behaves just in 
the opposite sense. An immediate influence upon the 
temperature distribution cannot be recorded, though. 

In view of the theory developed above one may 
contrive some novel measuring apparatus which are 
suitable to provide data relating to nonlinear viscosity. 
The geometrically more complicated patterns would be 
more informative than those generated by straight 
profiles of gap. Of course, the latter are easier to 
manufacture and manipulate, which is the reason of 
why they are given preference in the conventional 
viscometry. 

6. DETAILS OF SOME APPLICATIONAL EXAMPLES 

6.1. General remarks 
It would be inappropriate in the present paper to 

elaborate on all of the nine patterns considered in 
Section 2-with the exception of two rather uncompli- 
cated, but nonetheless interesting, representatives: the 
parallel-plate and plate-and-cone assemblies, and these 
only under the boundary conditions of ambidirectional 
heat transfer according to case (a) as defined in Section 4. 
The parallel-plate assembly is instructive by virtue of its 
constructional simplicity, though it may pass as trivial 
from the standpoint of the present theory insofar as the 
gap walls are not curved at all. The plate-and-cone 
assembly has also received some attention in the 
literature.? In addition, these examples afford partial 

t The approach put forward by Bird and Turian [26] was 
restricted to linearly viscous fluids. These authors used 
a so-called semidirect variational method. As they sup- 
posed the absence of any heat transfer at the gap edge, the 
underlying boundary conditions differ from those imposed 
by us. Hence an agreement of the results is demonstrable 
only in the approximation valid for a region not too far away 
from the axis of rotation; cf., especially, our equation (164) 
in what follows. 
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comparison between our results and those given in the 
literature.7 For the time being, these simple patterns 
enjoy great favor in applications. Yet this state of affairs 
ought not to mislead to the belief that other patterns, 
though more difficult to realize, must remain of minor 
practical importance for ever. 

6.2. Parallel-plate assembly 
This assembly embodies a parallel gap. In a way, it 

resembles a slit$ but, as a body of revolution, exhibits 
a variable rate of shear which increases proportionally 
to the radial distance r. This feature perhaps justifies a 
particular treatment at this place. 

Moreover, this example stands out for the property 
(now to be proved) that the approximate formulas set 
up in Section 5.2 coincide with the mathematically 
exact solution. According to (93), f is independent of z 
or s (since s = z -zO), so that f’ = 0. Further, we have 
g = 0 and g’ = 0. Hence we obtain from (53), (54) and 
(55) K = 1, K = f0 = f, L = 0 and, therefore, from (52) 

e=(r+f+ 
from (61) 

s r 
semax =t+7 

(154) 

(155) 

and from (65) in conjunction with (155) 

e Inax (156) 

Indeed, the same formulas emerge from the mathe- 
matical exact solution (96). 

It follows from (1 lo), or immediately from (155), that 
the critical values of the temperature difference between 
the gap walls for the disappearance of the temperature 
maximum are exactly determined by 

-To = rs = f s/2. (157) 

The inference that these values differ merely by their 
signs does no more than reflect the symmetry with 
respect to the transverse dimension. If, however, one 
keeps IT1 tixed and adopts (93), the disappearance of 
the temperature maximum is confined inside a circular 
cylinder of radius rCtit given by 

(rcritj2 =$[(l+8fY2/?$!~2-1] (158) 

tAnother instance already treated in the literature is the 
coaxial-cylinder assembly, which furnishes what, in the 
domain of viscometry, is customarily understood by Couette 
flows in a restricted sense. But the pertinent formulas put 
forward by Weltmann and Kuhns [27] seem to be unfor- 
tunately in fundamental disagreement from ours. 

SThe slit-defined as a pair of parallel walls, accidentally 
movable against, but maintaining their distance from, each 
other-can be conceived as the limiting case r, -P cc of a 
cylindric gap whose walls have lost any curvature. The 
temperature distribution in a slit came to be treated even in 

Calculations based 

literature. 

or, if fi = 0 (i.e. in case of linear viscosity), 

(rkt)’ = 2Jrl/ctS. (159) 

Since the second-degree equation (154) is exact, we need 
not bargain for any points of inflection. 

6.3. Plate-and-cone assembly 
This assembly owes its unsymmetrical configuration 

to the ease with which it can be built and employed. 
As regards the temperature distribution, it brings forth 
departures from that of the symmetrical conic gap only 
in higher orders if the gap is infinitesimally narrow. 

For the example under consideration we have 
9,, = 1112 and s = 9--(x/2). From (101) and (102) we 
then get 

fo = (a+B)p2 (160) 

and go = 0. After forming the derivatives off and g, we 
find fd = 0 and gb = - 1. Hence from (53) through (55) 
it follows that K = 1, K = fO, L = -T. Thus the ap- 
proximate formula (52) yields 

e = 
i 
fo~+[i-:(s2-s2)]r 

I 
s, (161) 

which holds also in cases not specified by (160) but 
characterized by the remainder of the above as- 
sumptions. 

On the other hand, stipulating (160) and inserting the 
pertinent boundary conditions, we obtain from (104) 
the mathematically exact expression 

8= (TS+p2[(~+~)(sinS)2-&(sinS)* 

-2~+~)lncosS]}~~~~~~~~~f 

-P2 
ci 78 

K > 
6+% (sins)‘-&(sins)’ 

-It+$lncoss] (162) 

and, by expanding (162) in terms of powers of s and S 
up to the fourth degree, the approximate expression 

a+B B +dSs2+6S3 
1 

1 1 
1 -p2-s2)-2(S4+2S2s2-3s4) S. 

(163) 
Upon dropping all terms of the fourth degree, equation 
(163) correctly reduces to (161) when (160) is taken into 
account. 

Now we come to inquire into the characteristics of 
the temperature profile. If we put up with the second- 
degree approximation, which implies (63) through (65) 
and (70), we arrive again at the formulas (154) through 
(157) established for the parallel gap-apart from the 
distinction between f. and f. 



1028 M. BIERMANN 

Invoking the next higher degree of approximation 
stage, we get from (60) p 112 -2-gs+y 

1 
. (164) 

By inspection of (155) and (47) we infer that IT/&l 
must not exceed the order of magnitude of S/2 if there 
is a temperature maximum in the gap, A power series 
expansion of (164) on this principle of order then yields 
the approximate expression 

which contains in the brackets a correction factor 
destined for the second-degree approximation corre- 
sponding to (155). By the way, the sign given to the 
square root expression in (164) is thus confirmed. 

Instead of( 157) we obtain from (164) the unlike values 

rlJ = -foS/(2-fS2), Ts = &s/(2$3S2). (166) 

Upon adopting (160), the disappearance of the tem- 
perature maximum for a fixed-either negative or 
positive-value of T turns out to be confined to a region 
inside a sphere of radius pcrltO if Y < 0, or pcrits if Y > 0, 
given by 

Proceeding at the same approximation stage, we get 
from (62) 

SOinfl = U&T-l. (1681 

By virtue of (47), the transverse temperature distri- 
bution exhibits points of inflection under the criterion 
To < Y < Ts with the critical values To for Soin = 0 
and Ys for soins = S given by 

To = fo, rs = fo/(l + S). (169) 

If, on the other hand, r is kept fixed and if f0 is 
assigned by (160), points of inflection exist inside the 
spherical zone 

(5)“’ <p G [&(lis)l’ii. (170) 

Although, setting out from the exact solution (162), one 
is able to show that the accuracy of the approximate 
formulas (168) through (170) will be modest, we re- 
nounce presenting further computations within the 
framework of this paper. 
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CALCUL DES CHAMPS DE TEMPERATURE STATIONNAIRES DANS LES 
ECOULEMENTS DE COUETTE GENERALISES DE FLUIDES SIMPLES 

R&armC-Une equation differentielle fondamentale du bilan local de flux d’tnergie dans des fluides 
homogenes simples (au sens de Noll) est ttendue au cas de mouvements cisaillb quasi-simples spatialement 
et mattiellement uniformes le long de lignes de courants circulaires (ou parallbles). A l’aide de quelques 
thcoremes connus de la thtorie non-lineaire des milieux continus, on montre que les mouvements 
supposC (ici brievement dbignb par Ccoulement de Couette g&&ah&s) sont dynamiquement a peu prea 
possibles s’il sont limit& a des passages trts ttroits, et que la rtponse physique du seul premier degrt 
dans les tenseurs cin&natiques, rep&en& par la fonction viscosite, recouvre entibrement le phtnomene 
du flux de travail. 

L’tquation aux d&iv&es partielles ttablie sous forme g&n&ale est ensuite r&htite a une equation 
ditT&rentielle ordinaire en imposant des conditions aux limites qui permettent de negliger toutes les 
d&iv&es de la temperature autres que celles par rapport a la direction transversale (c’est a dire per- 
pendiculaire aux parois de l’espace ttroit). Dans la direction longitudinale (c’est a dire le long des 
lignes de courant), la temperature ne varie pas d’aprts l’hypothese de symttrie de revolution. Dans la 
direction laterale suivant laquelle la largeur du passage peut varier lentement, tout effet de bord est neglige. 
Suivant la direction transversale, deux cas sont consider&s: (a) chacune des deux parois du passage sont 
maintenues a des temperatures constantes tventuellement differentes, (b) une paroi est a temperature 
fixQ mais I’autre paroi est calorifugee si bien que sa temperature depend de la production de chaleur. 
Des formules approchees, bar&es, sur ces hypotheses et sur un dtveloppement de Taylor suivant la 
coordonnee transversale, sont Ctablies dans le cas de champs de temperature dans des espaces de revolution 
de section droite quelconque. 

En introduisant des systtmes de coordonnees orthogonales specifiques adapt&s a des configurations 
vari&es de passages Ctroits de revolution (a savoir: cylindriques, paralleles, coniques, spheriques, para- 
boliques, hyperboliques et elliptiques), la voie est ouverte pour obtenir des solutions difinies et mathe- 
matiquement exactes. On tient compte de la dependance de la viscositt sur le taux de cisaillement dans 
une premiere approximation basec sur un developpement en sbrie entiere en fonction de l’invariant 
cintmatique. Un ensemble de formules de base pour diverses configurations de passages sont donn&es 
essentiellement a titre de reference. Dam la conclusion, quelques assemblages frtquemment utilisb (plaques 

paralleles, plaque et cone) sont Ctudies en detail. 

BERECHNUNG STATIONARER TEMPERATURFELDER IN VERALLGEMEINERTEN 
COUETTESTRGMUNGEN EINFACHER FLUSSIGKEITEN 

Zusammenfassung-Eine grundlegende Differentialgleichung der lokalen Bilanz des Energieflusses in 
homogenen einfachen Fltissigkeiten (im NOLL-schen Sinne) wird ftir raumlich und materiel1 station&e, 
quasi-einfache Scherbewegungen kings kreisformiger (oder such paralleler) Stromlinien neu entwickelt. 
Unter Benutzung einiger aus der nichtlinearen Kontinuumstheorie bekannter Lehrsatze wird gezeigt, dag 
die vorausgesetzten-hier kurz als verallgemeinerte Couettestromungen bezeichneten-Bewegungen 
dynamisch fast moglich sind, wenn sie auf sehr enge Spalte beschrlnkt werden und dag das Material- 
verhalten ersten Grades in den kinematischen Tensoren, wie es durch die Viskositatsfunktion wieder- 
gegeben wird, Erscheinungen des Arbeitsflusses erschopfend erfagt. 

Die in allgemeiner Form aufgestellte partielle Differentialgleichung wird dann auf eine gewohnliche 
zurtickgeftihrt, indem Randbedingungen angenommen werden, die es gestatten, alle i, jleitungen der 
Temperatur auger denen nach der transversalen Richtung (d. h. senkrecht zu den W,, , ien des engen 
Spaltes) zu vernachlassigen. In der longitudinalen Richtung (d. h. langs der Stromlinie , andert sich die 
Temperatur dank der vorausgesetzten Rotationssymmetrie nicht. In der lateralen Richtung, in der sich 
die Spaltweite langsam lndern kann, bleiben etwaige Randeffekte auger Betracht. In transversaler Richtung 
werden zwei Falle berticksichtigt: (a) beide Wande des Spaltes werden auf konstanten, moglicherweise 
unterschiedlichen Temperaturen gehalen; (b) eine Wand hat eine feste Temperatur, die andere aber ist 
gegen Warmeleitung isoliert, so dag ihre Temperatur von der Wlrmeerzeugung abhlngt. Aufgrund dieser 
Annahmen und einer Taylor-Entwicklung in der transversalen Koordinate werden Naherungsformeln 
fur Temperaturfelder in Umdrehungsspalten beliebiger Querschnittsform errechnet. 

Durch Festlegen besonderer rechtwinkliger Koordinatensysteme, die zu verschiedenen-namlich 
zylindrischen, parallelen, konischen, sphlrischen, parabolischen, hyperbolischen und elliptischen-Formen 
enger Umdrehungsspalte passen, wird der Weg zum Angeben bestimmter und mathematisch exakter 
Losungen bereitet. Die Abhlngigkeit der Viskositlt von der Schergeschwindigkeit wird in einer ersten 
Naherung berticksichtigt, die auf einer Potenzreihenentwicklung nach der kinematischen Invariante beruht. 
Eine Sammlung von Grundformeln fur die verschiedenartigen Spaltformen wird hauptsachlich zu 
Nachschlagezwecken gegeben. Am SchluB werden einige oft benutzte Anordnungen (parallele Platten, 

Platte und Kegel) im einzelnen untersucht. 

PACYET CTAUMOHAPHMX TEMIIEPATYPHbIX IIOJ-IEH 0606IQEHHbIX 
TEYEHMH KY3TTA HJIJI I-IPOCTbIX )IGIAKOCTEH 

A~~oraus~a- BbIBeLWHO OCHOBHOC M$+C~eHUPii3JlbHOC ypaBHeHW2 JlOKWlbHOrO 6ananca I’lOTOKa 

3HePTHH B OAHOpOaHbIX IlpOCTblX XWAKOCTRX (B CMblCJle Honnn) nJtx IlpOCTpaHCTBeHHbtX CTaUtiOHap- 
HblX KBa3WlpOCTblX Ci,BHTOBbIX TCYeHHfi BnOJIb Kp,‘rOBblX (a TBKXE nap~Jl,WlbHblX) JIl4HBfi TOKB. 
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c IIOMOqbK) HeKOTOpbiX TeOjJeM, K3BeCTHblX )13 HWIMHefiHOfi TeOpKS CJIJlOJ.IJHbJX CpeA, J'JOKZl3aH0, 

YTO npeAIlOJlWaeMbIe Te'ieHHR (3neCb KpaTKO Ha3blBaeMble 0606UleHHbIMH Te'ieHAIIMH Ky3TTa) 

AHHaMHYeCKH JIOYTA BO3MOxHb1, eCJlA OHhl OrpaHH'JeHbl OWHb y3KHMA 3tl3OpaM5i. KpoMe TOrO, 

MaTepWanbHan XapaKTepwTuKa nepaoir cTeneHki B KMHeMaTHYeCKHX TeHsopax, npeAcTasiIeuHas 

4yHKWiefi B113KOCTM,~O~HOCTb~OOnHCbtB~eT3He~~eTUYeCKlljinOTOK.~~~~e~H~~a~bHOey~~BHeHIIe 

B~aCTHblX~~H3BOAHbIX,nO~yti~HHM:Bo6~eiMB~Ae,3aTeMCBOAKTC~K06b1KHOBeHHOMyAN~~~H- 

UeaAbHOMyypaBHeHRK,AnffTpaH~YHbJXyCnOBli~,n03BOnRK)LUIIX npeHe6ipeYb BCeM~~pO~3BOA~lbl~~ 

OTTeMflepaTypbJ,KpOMeTeX,KOTOpbKeB3IfTbJ BIIOJE~YHOM HanpaB~eH~~(T,e.~epneHA~Kyn~pHO 

CTeHKaM Y3KOl-0 3a3opa). B JlpOAOJlbHOM Hanpawewkiki (T. e. BAOJlb nimM4 ToKa)TeMnepaTypa He 

w3MeweTcn 8cneAcTwie npeAnonaraeMoB cwMeTpMt4 spameww. KpoMe Toro, KorAa JuApHHa 

3a30pa MOW27 cnerKa H3MeHRTbCR, nto6ble KpaeBble +$eKTbl He yVMTblBaJOTC% YTO KaCaeTCR 

noneperHor0 HanpaBneHss, paCCMaTpABaroTcn ma CnyYafl, (A) TeMnepaTypbl o6eax CTeHOK, BO3- 

~0~~0pa3nwrttbJe,noAAep~twsalorcnnocTo~H~bJ~~;(6)Te~nepaTypaoA~oZicTeHK~~~KCmpooalta, 

aApyraitcTe~Karennori30nnposa~a,-raK,rToe&TeMnepaTypa3aBwcnToTKonu~ecTsaBblAenneh?oro 

Tenna. 

McxoAfl M33Tnx npeAnonomettuRn pasnowtewa B pRnTehopanononeperHblM KoopA5ifiaTaivf, 

nonyqeHbr npH6JWKeHHble @opMynbl pn TemepaTypwblx nonefi B sasopax, o6pasymwxcn npe 

BpauleHHwTennto6oroce~eHuR. Mcnonb30BaHHe onpeaenemiblx OpTOrOHanbHblXCHCTeMKOOpAHHaT, 

COOTBeTCTByIOl.UMX pa3JWJHblM,a WMeHHO LJWlHHApH'JeCKF4M,napa~neJlbHblM,KOHWJeCK~M,C~e~H- 

UeCKHM, napa60nwwcKwMw 3~~~~T~~eCKNM~OpMaMy3KtlX3a30pOBBPalLLeHWfl~03BOnSleT~OnyYIfTb 

O~~A~eHHbJe M MaTe‘~aT~qeCK~ TO',HbIe PeJUeHfW. b8HCHMOCTb BI13KOCTN OT CKOPOCTH CABI(ra 

yq~Tbl~eTC~ B~ep~M~p~6n~~eH~~Ha~HOBeCTe~eHHOrO pa3JJOXeHMSi BpXA,IICXOAR Ji3 KHHeMa- 

TIiYeCKOrOHHBapSiaHTa.~enblk ~~AOCHOBHblX~pM~~A~~pa?~~~HblX~O~M3a3O~OBn~~BOA~TC~, 

B OCHOBHOM,AJJR CnpaBKn. B 3aKnJOYeHHe nonpo6Ho paCCMaTpMBaK)TCfl HeKOTOpble 4aCTO MCrJOJJb- 

3yeMble KOM6HHaIl#kI(napaflneJJbHble JlJlaCTMHbl,n!IaCTHHEl W KOHyC). 


